skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiong, Jingwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Copy number changes play an important role in the development of cancer and are commonly associated with changes in gene expression. Persistence curves, such as Betti curves, have been used to detect copy number changes; however, it is known these curves are unstable with respect to small perturbations in the data. We address the stability of lifespan and Betti curves by providing bounds on the distance between persistence curves of Vietoris–Rips filtrations built on data and slightly perturbed data in terms of the bottleneck distance. Next, we perform simulations to compare the predictive ability of Betti curves, lifespan curves (conditionally stable) and stable persistent landscapes to detect copy number aberrations. We use these methods to identify significant chromosome regions associated with the four major molecular subtypes of breast cancer: Luminal A, Luminal B, Basal and HER2 positive. Identified segments are then used as predictor variables to build machine learning models which classify patients as one of the four subtypes. We find that no single persistence curve outperforms the others and instead suggest a complementary approach using a suite of persistence curves. In this study, we identified new cytobands associated with three of the subtypes: 1q21.1-q25.2, 2p23.2-p16.3, 23q26.2-q28 with the Basal subtype, 8p22-p11.1 with Luminal B and 2q12.1-q21.1 and 5p14.3-p12 with Luminal A. These segments are validated by the TCGA BRCA cohort dataset except for those found for Luminal A. 
    more » « less
  2. Mice are the most commonly used model animals for itch research and for development of anti-itch drugs. Most laboratories manually quantify mouse scratching behavior to assess itch intensity. This process is labor-intensive and limits large-scale genetic or drug screenings. In this study, we developed a new system, Scratch-AID ( A utomatic I tch D etection), which could automatically identify and quantify mouse scratching behavior with high accuracy. Our system included a custom-designed videotaping box to ensure high-quality and replicable mouse behavior recording and a convolutional recurrent neural network trained with frame-labeled mouse scratching behavior videos, induced by nape injection of chloroquine. The best trained network achieved 97.6% recall and 96.9% precision on previously unseen test videos. Remarkably, Scratch-AID could reliably identify scratching behavior in other major mouse itch models, including the acute cheek model, the histaminergic model, and a chronic itch model. Moreover, our system detected significant differences in scratching behavior between control and mice treated with an anti-itch drug. Taken together, we have established a novel deep learning-based system that could replace manual quantification for mouse scratching behavior in different itch models and for drug screening. 
    more » « less